Analysis of some future events related to the situation in the Middle East and the World

The following lines or paragraphs are taken or inspired from two answers I wrote on Quora in relation to what is happening in the Middle East and/or what I think will happen, and in relation to World History and future events in the USA and elsewhere.

I want to point out that I was raised Christian, I have knowledge about most religions (see for example the books I read in the religion related page), I appreciate religions, but I have been non-religious (agnostic) for several years. I’m also not attached to any particular political philosophy or ideology.

I will try to explain and give an idea about what I think will happen in the Middle East and generally in world events in the next two or three decades (these lines have been originally written at the end of December 2017), based on my readings, reflections and objective or neutral analysis of historical events.

One has to take into account the fact that events in the Middle East are related to earlier historical events, to global events, and to the interplay and interference of great powers in this region.

As I mentioned in other answers, my analysis is related to the following notions or guiding principles:

  • The notion that (along with historical progress and evolution) there are “periodicities” , regularities , connections, patterns and exact correspondences or analogies between historical events over periods of two thousand years or two millennia.
  • The notion of inversion or transmutation of values , more or less related to Nietzsche’s philosophy .
  • The notion or general principle that the main great powers in History succeed each other and follow the same phases or stages of rise and growth, and subsequently of progressive decline.

In light of the notions or principles above, here is what think will take place.

The events in the Middle East will be influenced by the actions and the interactions of the great powers, and one of the main great powers involved is the USA.

Based on the notion that great powers follow the same chronological stages of development, here are some historical facts.

In the seventeenth century, the British and their nation witnessed a number of societal and political changes. Then a man named Oliver Cromwell came to power and ruled for a definite period of time.

At the end of the eighteenth century, after the French Revolution, the French had a man named Napoleon Bonaparte who came and ruled them for some time.

In the first half of the twentieth century, the Germans had a man named Hitler who came and ruled them.

And it can be concluded or deduced from the above that the next Cromwell, Napoleon or Hitler is going to come and rule in the USA in the next two or three decades.

The events in the USA and elsewhere will have an impact on the Middle East. A great war will take place in the Middle East region, with the great powers intervening and taking sides. All the peoples of the Middle East will be affected, there will be dramatic consequences for all the inhabitants of the region, and the effects will be felt all over the world.

Concerning other great or major powers, nations such as France and Germany will get closer to Russia. The British, willingly or reluctantly, will follow the politics and policies of the USA. After the American “Napoleon” or “Hitler” is gone, the USA will become a secondary great power.

Moreover, it is to be noticed that what happened to the ancient Hebrews and Jews two thousand years ago is happening to Arabs and Muslims at this period of time.

Here are some additional details with regard to my analysis.

Let’s include some historical reminders.

It is known that Oliver Cromwell, who ruled Great Britain as Lord Protector in the seventeenth century, was 18 years old when his father (Robert Cromwell) died.

Napoleon Bonaparte, who ruled France, was 16 years old when his father (Carlo Maria di Buonaparte) passed away.

Hitler, who ruled Germany, was 14 years old when his father died.

From the facts and observations above, and the concept or principle of the succession of great powers that follow the same phases or stages of progressive rise and decline one after the other, it can be noticed or deduced that the next “Hitler” will come and rule the USA in the next two or three decades, and he will be 12 years old when his father dies. He will usher in changes and he will have an influence on global events and on the events in the Middle East until he is gone.

In any event, let’s wait for the unfolding of future events and for the possible “experimental verification” of what I have written.

Here are links to the pages where my original answers are located on Quora:

What is happening in the Middle East?

What will the next Alexander/Napoleon/Hitler look like? When will they rise and what will be their driving ethos or ambition?


About Zeus, Prometheus, and the punishment of the latter- Part Three

Here is a continuation of my analysis, ideas and comments concerning the story and the punishment of Prometheus, and an attempt to explain or interpret plausibly what happened between Prometheus and Zeus, and how Prometheus and his actions ought to be assessed and viewed.

I will consider the story of the one they called Zeus in Greek from the point of view of Euhemerism, which states that the gods were real great men or great heroes of the past who accomplished great things and were deified after they died.

According to this perspective, Zeus/Jupiter may be regarded as a very great man of the past who had the most advanced way of thinking, the most advanced teachings and the most advanced knowledge in the world and at the period of time he lived in.

As I mentioned in the previous posts about this topic, Prometheus would be best regarded as a mediocre man with little preparation or with limited potentiality for greatness or creativity, who lived alongside the great man who was later called Zeus or Jupiter, and who by jealousy, hubris, conceit, attachment to old ways of thinking, and by misguided actions, betrayed and tried to trick and hurt that great man who was his contemporary.

I will try to compare Prometheus (as accurately as possible) to historical characters or potential historical characters in order to give a better idea about his character, his personality, and his historical role.

The following comparison is not totally accurate, but it gives an idea about someone Prometheus could be approximately and reasonably compared to.

If  Prometheus had lived at the time of Pythagoras, he would have been someone (more or less) comparable to Cylon of Croton.

Here is how Iamblichus describes Cylon in his Life of Pythagoras:

“Cylon, a Crotoniate and leading citizen by birth, fame and riches, but otherwise a difficult, violent, disturbing and tyrannically disposed man, eagerly desired to participate in the Pythagorean way of life. He approached Pythagoras, then an old man, but was rejected because of the character defects just described. When this happened Cylon and his friends vowed to make a strong attack on Pythagoras and his followers. Thus a powerfully aggressive zeal activated Cylon and his followers to persecute the Pythagoreans to the very last man. Because of this Pythagoras left for Metapontium and there is said to have ended his days.”

Cylon had no notable historical importance or greatness by himself, but he is remembered because he interacted with a very great thinker, mathematician and philosopher named Pythagoras. He tried to follow Pythagoras, but when he couldn’t or was rejected, he tried to hurt the great man.

The next comparison involves a fictional or hypothetical character (comparable to Prometheus) who would have lived at the time of Isaac Newton. This character (let’s just call him P) would have belonged to a somewhat well-to-do family, and would have been a student at Trinity College, Cambridge, between 1668 and 1672, or (if not a student) would have been someone whose job or (non-academic) work was related to Trinity College and Cambridge.

P would have made the acquaintance of Newton at Cambridge, who sometimes invited him to his office or quarters, and showed him some of his mathematical and physical papers, and some blueprints or sketches related to the reflecting telescope he was designing.

P had no interest in and no potential for mathematical, philosophical, intellectual or scientific innovation or creativity. He generally had conservative religious and philosophical ideas and opinions, most likely reading very few books and sticking to the ideas of ancient thinkers such as Aristotle.

P visited Newton and inquired about his work and papers. He became more and more jealous of Newton, realizing or seeing that Newton might publish his papers and design a new telescope to be shown to the Royal Society in the near future, thus becoming known and famous and an important person. Newton started to notice P’s attitude and his envious words and behavior, but he didn’t give it too much attention, and tried to gradually distance himself from P, and to conceal his work and papers from others until he was ready to publish them or make them known.

People were able to write philosophical, scientific or pseudo-scientific papers at the time of Newton, and telescopes existed before Newton, but Newton was unique at the period of time when he was alive, in the sense that he was a very great man capable of great creativity and innovation in science, mathematics, (natural) philosophy, and the design of telescopes or scientific instruments (Newton’s interest in alchemy and occult studies will not be discussed here). This relates to the idea that humans might have known elementary or rudimentary ways to use fire (and related technology) at the time of Zeus and Prometheus, but Zeus was the one capable of using fire (and related technology or applications) in very creative, useful and innovative ways.

One day, P waited for an opportunity when Newton left his office for a short period of time without closing the door. He went into Newton’s office, or probably sent a close acquaintance or a servant of his to Newton’s office, and took away a number of Newton’s scientific and mathematical papers, as well as a sketch and a piece or two of the telescope Newton was designing.

It is evident that Newton was very angry and upset when he saw that his papers and work had been stolen. He knew from the previous behavior of P that he was the culprit. He tried to talk to P, and he even reached out to P’s family, and tried to negotiate with them for weeks in order to get back what was stolen. P denied having anything to do with what happened, and even feigned to be shocked and offended when Newton said he just wanted his work and papers back and he wouldn’t hold anyone accountable and forget the whole thing if everything was returned.

Fortunately Newton had duplicates or drafts of most of his papers, but he had to rewrite some of the papers, and to remake the stolen pieces of the telescope he was building. He also had to keep quiet and wait for some time before he could get justice for himself and retribution for the culprit. During that time, P hid what he had stolen in his house. He sometimes showed the papers to some people he knew well, and tried to sell the telescope pieces and some of the papers but was unsuccessful. He tried to read Newton’s scientific papers but couldn’t understand them. He scribbled some nonsensical words or some poems or songs on some of the papers, and threw one or two papers away, but he kept most of them hidden.

Newton had to wait more than a decade, until he became a productive member of the Royal Society, or until he published the Philosophiæ Naturalis Principia Mathematica, and became a known, recognized and important scientific figureThen he was able to act appropriately, exerted pressure on P and his family, and made P give him back what he had stolen and admit everything. P was deservedly, rightfully and justly punished and sent to prison for what he had done. Newton even had to punish appropriately one or two of P’s relatives for being involved in what had happened and for being P’s accomplices. 

P was a mediocre person who acted out of jealousy and envy and tried to trick and hurt Newton, without benefitting anybody by his actions. Perhaps many centuries later or more than three millennia later, the details of what happened between P and Newton would become unclear, blurred or lost, and some people or writers would state or conclude (wrongly) that P was a benefactor or a hero who tried to help humans by his act of theft, and that Newton acted hastily or unfairly by punishing P, thus accusing Newton of concealing scientific knowledge and technology away from humans and of being unhelpful to humanity.

And here is in my opinion another fairly close comparison.

If Prometheus had lived at the time of Jesus, he would have been comparable to someone named Judas Iscariot.

This comparison might be regarded as somewhat controversial. It also seems that some writers are trying nowadays to rehabilitate Judas.

Whether one is religious or not, I think it ought to be evident that Jesus was the greatest man at the period of time when he was alive. Whether opinions and views about Judas change or not, I think that like Prometheus, he ought to be considered as someone who lived in the presence of a man of the greatest historical importance, and like Prometheus, he didn’t have intrinsic historical importance or greatness, but his actions were a “catalyzer” or a “catalyst” for subsequent important events.

From the ancient narratives, stories and myths about Zeus, it is known that he lived a long life and died at an advanced age. By the nature of his life, the one they called Zeus in Greek was able to hold Prometheus accountable and to justly punish him while he was alive.

As an additional remark, at the end of the nineteenth century, in his introduction to the Prometheus Bound tragic play of Aeschylus, the philologist Nicolaus Wecklein described Prometheus as a “short-sighted forethinker”. Since the etymology of the name Prometheus either signifies “afterthought” or refers to stealing and theft, it would be best and more plausible to emphasize the meaning of “thief” or “theft”.

I hope this analysis provided reasonable, coherent, valid and correct explanations and interpretations concerning the story of Prometheus and his punishment. Hopefully additional or better arguments or some new evidence would emerge in the future, confirming or corroborating the analysis given in this post and the previous ones.


Concerning Pi, again

For Pi Day this year (2018), I will provide some results related to this interesting mathematical constant. These results are mostly inspired or taken from answers I gave at about  \pi or about similar mathematical topics.

The millionth decimal digit of π is 1 (verified with Mathematica).

The 10 millionth decimal digit of π is found to be 7, and the 100 millionth decimal digit of π is 2.

The billionth decimal digit of \pi (in base 10) is 9 (verified with Mathematica).

The 2 billionth decimal digit of π is found to be 0 (this result takes a longer time to compute with Mathematica).

Here are some (repeated) number sequences or numeric strings found among the first 2 billion decimal digits of π.

The numeric string 777777777 appears at the 24, 658, 601 st decimal digit of π :


The numeric string 111111111 appears at the 812, 432, 526 th decimal digit of π :


Here are also two numeric strings from 1 to 9 in increasing order and decreasing order:

The numeric string 123456789 appears at the 523, 551, 502 nd decimal digit of π:


The numeric string 987654321 appears at the 719, 473, 323 rd decimal digit of π :


The numeric strings above can be calculated or found with the help of the following link or web page:

Irrational Numbers Search Engine

The numerical value of \pi^{\pi} to 1000 decimal digits is equal to:


Two expressions involving π and infinite sums:

pi infinite cums

Representation of π in continued fraction form:

pi continued frac form

The sum of π and e, the base of natural logarithms, is equal to:

\pi + e=\displaystyle  \sum _{k=0}^{\infty } \frac{(3 k)^2+1}{(3 k)!}+2 i \ln \left(\frac{1-i}{1+i}\right)i

The letter i  represents the imaginary unit of complex numbers.

Another expression involving π, e, and an infinite product:

\pi = \displaystyle 2 e \prod _{k=1}^{\infty } \left(\frac{2}{k}+1\right)^{(-1)^{k+1} k}

And here is an identity relating the Golden Ratio, π, e, and the imaginary unit i:

\displaystyle \varphi=e^{i\pi/5}+e^{-i\pi/5}=\frac{1+\sqrt{5}}{2}

The value of π can be deduced from the identity above:

\displaystyle\pi =5 i \ln \left(\frac{1}{2} \left(\varphi -\sqrt{\varphi ^2-4}\right)\right)

Concerning the relationship between science and philosophy

This post consists of the  elements of an answer I wrote at ; the question there was: “Is philosophy the top of all kinds of sciences?”

I think it would be convenient to distinguish between the general term “science”, referring to the state or fact of knowing, or to knowledge acquired by study and learning, and the modern meaning of “science”, mostly referring to mathematics and to the exact sciences using the rules of the scientific method (astronomy, physics…).

Philosophy and science were not separate in Antiquity.

In the original sense, philosophy meant the love, study, or pursuit of wisdom, or the knowledge of things and their causes, theoretical as well as practical.

Pythagoras was a mathematician, and at the same time it is said that he was the first one to call himself a philosopher, or “lover of wisdom”.

Plato was a philosopher who recommended the knowledge and the study of geometry. In The Republic, Plato thought that the best ruler was the king-philosopher.

Aristotle studied nature and wrote works about physics, biology, logic, etc, from a philosophical point of view.

According to the OED:

   “In the Middle Ages, ‘the seven (liberal) sciences’ was often used synonymously with ‘the seven liberal arts’, for the   group of studies comprised by the Trivium (Grammar, Logic, Rhetoric) and the Quadrivium (Arithmetic, Music, Geometry, Astronomy).”

The expression Natural philosophy was frequently used for centuries :

   “Natural philosophy or philosophy of nature (from Latin philosophia naturalis) was the philosophical study of nature and the physical universe that was dominant before the development of modern science. It is considered to be the precursor of natural science.

    From the ancient world, starting with Aristotle, to the 19th century, the term “natural philosophy” was the common term used to describe the practice of studying nature. It was in the 19th century that the concept of “science” received its modern shape with new titles emerging such as “biology” and “biologist”, “physics” and “physicist” among other technical fields and titles; institutions and communities were founded, and unprecedented applications to and interactions with other aspects of society and culture occurred. Isaac Newton‘s book Philosophiae Naturalis Principia Mathematica (1687), whose title translates to “Mathematical Principles of Natural Philosophy”, reflects the then-current use of the words “natural philosophy”, akin to “systematic study of nature”. Even in the 19th century, a treatise by Lord Kelvin and Peter Guthrie Tait, which helped define much of modern physics, was titled Treatise on Natural Philosophy (1867).

In the last few centuries, alchemy separated from chemistry, astrology separated from astronomy, and there was also a certain separation between philosophy on one side, and mathematics and the exact sciences on the other side.

Mathematics became progressively the most prominent and the essential scientific discipline, it is acknowledged as the language of science and of the physical world.

Philosophy is nowadays often regarded as a reflection, view or study of the general principles of a particular branch of knowledge, or activity. There is a philosophy of science, philosophy of mathematics, philosophy of education ,etc.

Some theories or views related to epistemology (which is concerned with the general theory and the study of knowledge) and philosophy, such as rationalism, empiricism, and positivism, share a number of principles with the scientific approach to events and phenomena.

photo of Kant

(Source of the image above: Wikimedia Commons)

A scientist or a physicist can also be a philosopher. Important thinkers can be philosophers and create philosophical systems, but modern philosophers must take into account the advances, discoveries and theories in modern science. A historical example would be Immanuel Kant elaborating his philosophical system and philosophical ideas at the end of the eighteenth century in light of and in relation to the exact sciences known at that time, especially Euclidean geometry and Newtonian classical physics and mechanics.

About the 2016 presidential elections

I read a lot , and I try to analyze events objectively. I wrote an answer on June 18 , 2016  on outlining a general rational method to analyze historical events , and I gave reasons why Donald Trump would be elected president . The link to that answer can be followed by clicking here . I added an update to the answer in November , but the initial publication date can be seen in the answer log .

I also wrote an answer on November 9 , 2016 , reminding of the answer I wrote in June and giving additional explanations concerning my point of view and my ideas.

I will present here the two answers I wrote (with a few unessential modifications) , and part of a third answer I wrote .

Here is the first answer of June 18 , 2016:

First of all , I’d like to point out that I’m not involved in politics and I’m not attached to any political ideology , but I’m going to try to give my (objective and concise) opinion about this topic .

Based upon my many readings and my personal reflections , I think an objective study of historical events can be conducted , and the principles of the scientific method can even be applied to History , if it is done the right way .

I think Trump would be the president of the USA based mainly on two reasons or two notions:

  1. The notion that (along with historical progress and evolution) there are “periodicities” , regularities , and exact correspondences or analogies between (human) historical events over periods of two thousand years or two millennia , which is why I would call them bi-millenary correspondences .
  2. The notion of inversion or transmutation of values , more or less related to Nietzsche’s ideas .

For the first notion , there is an exact correspondence between the Roman emperor Claudius and Trump . According to the Wikipedia article about Claudius (who ruled from 41 to 54 CE) , it was reported that “at one time he expelled the Jews from Rome, probably because the Jews within the city caused continuous disturbances[…]” and the Wikipedia note states : “There is some debate about what actually happened. It is reported by Suetonius and in Acts (18:2), Cassius Dio minimizes the event and Josephus—who was reporting on Jewish events—does not mention it at all. Some scholars hold that it didn’t happen, while others have only a few missionaries expelled for the short term.” This event corresponds to Trump’s call to ban Muslims from the USA .

For the second notion , it is known that Claudius was the first Roman Emperor to be born outside Italy . This is to be contrasted with Trump’s birther ideas or birther issue , insisting that the president should be a natural born citizen of the United States .

These explanations or ideas may seem new or strange or “exotic”, but I think I have a point here .

So we’ll have to wait for the verification of what I have stated above with the unfolding of future events .

Update (November 9, 2016) :

Trump has been elected president. It looks like the unfolding of events has provided an empirical or “experimental” verification of what I had written about five months before the November elections. In fact this answer was written on June 18, 2016.

Here is my second answer , published November 9 , 2016:

I think a statement such as “I told you so” is in order here. I wrote an answer on June 18, 2016 about why Trump would win the November presidential elections. Not that I follow any politician, I’m not attached to any particular political person, political party, or political philosophy.

I presented or outlined a general method based on the proper , correct , and rational analysis of current events and of related specific past historical events (which took place too millennia ago) , and a way to find connections , correspondences and analogies with current events , and to reasonably , objectively anticipate future important events. This method may need more explanations, refinements, or elaborations, but I think it is correct and valid. I’d consider that the unfolding of recent events can be regarded as an empirical or experimental proof or verification of what I had stated earlier in June.

There is no need to refer to the concept of black swan or to similar notions or interpretations, or to say “this is implausible, nobody could have seen or known this”. Randomness and “black swans” are usually a reflection of our ignorance of all the relevant and/or necessary data and facts. The supporters of the winner don’t subscribe to the implausibility or to the black swan narrative and would say that they knew all along he would win the elections. However they represent one side or one of the sides of the issue at hand, so their discourse is not unbiased or dispassionate and is not based on objective and neutral analysis.

I think the impartial , adequate , accurate analysis , study and comparison of historical events and the detection of patterns, regularities , relations and connections between these events can generally help explain the past and also provide insights and valid anticipations of significant future events.

Moreover , The general idea of using scientific methodology (to try to find out who will be the next president for example)  is not the core problem , the essential requirement is to use and apply something such as the rules or principles of the scientific method the right way , and to use the right , correct , accurate , adequate, verifiable methodology .

About the importance or relevance of black swan events in History

Here is a slightly modified reproduction of an answer I wrote at concerning the black swan theory and black swan events in History.

The Black Swan theory or notion can be sometimes useful but it cannot be reliable or subject to generalization for History.

Explaining (or not being able to explain ) historical events by often relying on the concept of Black Swan can be counterproductive and prevents researchers and thinkers from analyzing objectively and impartially human history in order to find patterns , regularities , and reasonable interpretations in accordance with the principles of the scientific method.

I’ll give an example:
The British had a guy called Oliver Cromwell.Then the French had a guy called Napoleon Bonaparte . Then the Germans had a guy called Hitler. So one could discern a pattern here in the historical succession of great powers.

Another example:
There are many important scientists and scholars but a few have an importance or greatness of the biggest caliber.
The British had a very important scientist called Isaac Newton , then the French had a scientist called Pierre Simon Laplace , then the Germans had a scientist called Albert Einstein ( Einstein was born in Germany , then he lived in Switzerland , then he came back to Germany , then he went to the United States.But in his most productive years he was in the sphere of influence of the German language and of the German culture).

An interesting field for studying history is Cliodynamics, but I think the methods of cliodynamics can also be ameliorated and surpassed.

Certain events might be unexpected for a group of people , but they could be expected and/or predictable for another group of people.

A famous event such as the French Revolution was unexpected and could have been viewed as a Black Swan by the French nobles and aristocrats and by the supporters of the Ancien Régime , but it was expected , anticipated and brought about by the ‘bourgoisie’ , the peasants and the common people in France.The English Civil War or the English Revolution can be thought of as an antecedent to the French Revolution.
For the last two centuries the French Revolution and its causes have been explained , interpreted and reinterpreted in many ways by many people and thinkers.

Some events may seem surprising or unexpected , but the big picture and the general structure of historical events can be analyzed , found and interpreted.

As an additional example , I think there is no need to refer to black swans in relation to the 2016 presidential elections in the USA . Things and events to come can be viewed objectively by analyzing past historical events the right way , impartially and coherently , and by making the right and correct connections .

I also think specific patterns , regularities , and connections between important events can be found in human history for (definite) periods extending over centuries and even millennia.

A poem I wrote years ago

I was fifteen- soon to be sixteen- years old ; I had been reading (important) books about science, physics, philosophy , and other similar topics,  and all those ideas in my head intermingled and inspired me to write a poem involving particle physics and particle collisions and combining elements of science and philosophy .

I wrote the poem in French , using the French alexandrine poetic meter of twelve syllables, but I didn’t follow the poetic rules very closely.

I will provide the final version of the poem here , with a line by line English translation. Different people have different tastes and opinions , I hope it will be liked .

The hydrogen-1 atom mentioned in the title of the poem is also called “protium” , but this last word is not much used in French. Protium is the most common hydrogen isotope, having one proton ( and one electron) and no neutrons.

A proton is supposed to be talking or telling the story in the poem . I think I was a little inspired by the poem ” Le Bateau ivre ” by Arthur Rimbaud .

Here it is :

Bombardement d’atomes par un proton d’hydrogène 1H
Bombardment of atoms by a proton of protium 1H

Synchrotrons , canons à électrons, cyclotrons
Synchrotrons, electron guns, cyclotrons

Soyez prêts, particules, deutons, neutrons, hélions
Be prepared, particles, deutons/deuterons, neutrons, helions

En attendant que les hommes préparent les canons
Until men prepare the guns

Le moment est arrivé, l’appareil frappe
The moment has come, the apparatus strikes

Dans son coeur vidé moi, le proton j’attrape
In its emptied heart I , the proton take

Le coup et je vais croiser les atomes en grappe
The blow and I go meet the atoms in clusters

Je fuis dans l’espace et le temps calculables
I flee in computable space and time

Ma vitesse est vertigineuse, incroyable
My speed is vertiginous, incredible

Non pas celle de la lumière, infranchissable
Not that of light, insurmountable

C’est le lieu de la relativité impie
It is the place of impious Relativity

Masses, longueurs, lois de la physique varient
Masses, lengths, physical laws vary

Ma trajectoire déterminée sera suivie
My particular/determined path will be followed

Par d’autres microcosmes malheureux
By other unfortunate microcosms

Le trajet est terminé, le choc a eu lieu
The journey is over, the shock/collision occurred

Je donne la vie à de nouveaux corps heureux
I give life to new happy/fortunate bodies

Quanta de matière utilisés pour la paix
Quanta of matter used for peace

Dans le monde de la science un pas est fait
In the world of science a step/discovery has been made

L’humanité en marche en connaît les bienfaits
Humanity in motion/advancing knows the benefits (of this discovery)

Some notes about the possibility of a mathematical theory of History

I will present some general remarks and some personal opinions and findings (with a constant concern for accuracy and objectivity) about the attempts at mathematizing History , historical events , processes and phenomena.

My many readings (see my various book pages and the books I have read) and my analysis of History made me realize that important historical events and phenomena are (highly) periodic , and that exact correspondences (or similarities or “homologies” , one of these terms could be chosen, used  and defined) can be found between historical events separated by definite periods of time .

The history of humanity can be considered as the result of the interactions between the lives and actions of human beings  moving and acting in time. All humans have a role to play in the unfolding of historical events , but great men (and women) and great thinkers/scientists/reformers constitute the main group of humans who change and drive historical phenomena and happenings across cultures , nations and empires.

Evolution and progress take place in human history , such as technological/scientific progress, the increase in the global human population over millennia and the increase in the surface of political entities, from city-states to nation-states and to bigger entities , etc, but there are also general principles and definite periodicities and regularities in world history. Among these regularities are the stages or phases of gradual growth and decline through which most great powers and empires pass as they rise/fall and go up and down in time. Certain essential periodicities or cycles in history are accompanied by a change or transmutation in values (“moral” , behavioral , sexual, etc).
Relevant concepts can be defined such as the notion of bi-millenary (exact) correspondence and of bi-millenary periodical return of historical events. I will explain and clarify these concepts more when I have time in future writings.

Some philosophical and religious theories talk about eternal return/recurrence and cyclical time (the notion of eternal return constantly permeates the philosophy of Nietzsche), but these notions are not defined in a precise or scientific way.

I think that Mathematics and the scientific method , i.e observing phenomena and collecting data, creating hypotheses with the adequate mathematical model, experimental/empirical verification of these hypotheses and building  coherent theories, can be used in and applied to human history, provided that this is done in the proper and correct way. Historical chronology plays an important role, and the chronology of events before the Common or Christian era ought to be revised and corrected.

Another prerequisite for the impartial and objective study of history is to abandon preconceived ideas and to have a global perspective of human history , avoiding euro-centrism , afro-centrism and all kinds of ethnocentrisms , and avoiding to get stuck in certain habits such as classifying people and cultures into Western and non-Western. One should take into account the fact that geopolitical groupings and alliances change with the passing of time , centuries and decades.

A new discipline called Cliodynamics was created in the last decade . It is an area of research using mathematical , quantitative approaches and modelings to explain historical processes and societies. The practitioners of this discipline have made some interesting observations about historical events and have tried to formulate mathematically backed theories to interpret historical facts , however I think they have not found or discovered the right , convenient , correct and/or precise way to mathematize History and historical phenomena .

If the right mathematical theory of human history can be elaborated, using the scientific method and testing hypotheses in history could be equivalent to and lead to the (precise) prediction of important events taking place in the future of humankind.

Books about physics, astrophysics and astronomy regarded as important classics

This post is mostly inspired (with some additions and modifications) from and answer I wrote at .

I will try to give a list of famous , influential books or classic books having a significant historical importance in the fields of physics , astrophysics and astronomy . It’s a somewhat extensive list but it’s not exhaustive.

Starting with Antiquity :

Then advancing to more recent times:

Al Sufi stars

Copernicus book

Below is a page from the Astronomia Nova (in 1609) showing the three models of planetary motion known in the seventeenth century (free image from Wikipedia) :

Astronomia Nova

Newton's Principia


Carnot reflexions

  • Recherches sur la théorie des quanta (Researches on the quantum theory) , and The Current Interpretation of Wave Mechanics: A Critical Study , by Louis de Broglie .
  • Collected papers , The interpretation of Quantum Mechanics , and Statistical Thermodynamics , by Erwin Schrödinger .
  • The Physical Principles of the Quantum Theory , by Werner Heisenberg .
  • Books and papers by Paul Dirac , such as The Principles of Quantum Mechanics and Lectures on Quantum Field Theory .
  • Space, Time and Gravitation: An Outline of the General Relativity TheoryThe Internal Constitution of Stars , and The Nature of the Physical World , by Arthur Eddington .
  • Problems of Cosmology and Stellar Dynamics , An Introduction to the Kinetic Theory of Gases , and  The Growth of Physical Science , by James Hopwood Jeans .
  • The Theory of Sound , by John William Strutt, 3rd Baron Rayleigh .
  • Problems of Atomic Dynamics , Atomic Physics , Principles of Optics , Experiment and Theory in Physics , and A General Kinetic Theory of Liquids , by Max Born .
  • Books and papers by David Bohm , such as Quantum Theory , Causality and Chance in Modern Physics , The Undivided Universe.

Some more recent well known , insightful and/or widely used books would include :

  • The Large Scale Structure of Space-Time , by Stephen Hawking and George F. R. Ellis .
  • Speakable and Unspeakable in Quantum Mechanics , by John Stewart Bell .
  • Classical-Mechanics , by Herbert Goldstein .
  • Classical Electrodynamics , by J.D. Jackson .
  • Galactic Dynamics , by Binney and Tremaine .
  • The Quantum Theory of Motion: an account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics , by Peter Holland .
  • Photons and Atoms: Introduction to Quantum Electrodynamics , by Claude Cohen-Tannoudji , Gilbert Grynberg and Jacques Dupont-Roc .
  • Introduction to Elementary Particles , by D.J. Griffiths .
  • Condensed Matter Field Theory , by Alexander Altland .
  • The Standard Model and Beyond , by Paul Langacker .
  • The Road to Reality , by Roger Penrose .
  • Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law , by Peter Woit .
  • The Trouble With Physics: The Rise of String Theory, The Fall of a Science, and What Comes Next , by Lee smolin .
  • Farewell to Reality: How Modern Physics Has Betrayed the Search for Scientific Truth , by Jim Baggott .

Additional relevant links :……

Astronomy in the medieval Islamic world

Indian astronomy

Chinese astronomy

Regarding gravitational waves

Gravitational waves have become a popular topic recently , and this post presents material I have written for an answer at (with a few modifications).

Gravitational waves are changes in curvature similar to ripples in space-time . They are an indirect result of the special theory theory of relativity , and were explicitly proposed by Einstein in 1916 in the framework of his theory of general relativity . He showed that the acceleration of mass generates gravitational fields which are time-dependent and are capable of transporting energy (as gravitational radiation ) from their source at the speed of light .
Gravitational waves are quadrupolar in nature , whereas electromagnetic waves are dipolar . Oscillating multipole moments of the mass distribution of a system produce gravitational radiation .
Many attempts have been made to detect gravitational waves , but no direct evidence of their existence has been observed until their recent detection in February 2016 .

The Einstein field equations describe the interactions between space-time curvature and mass , as Maxwell’s equations describe and specify the relationship between electric charge and electromagnetic fields .
The field equations have a solution represented by a weak oscillating perturbation to the curvature of space-time , and this solution is a gravitational wave .
These waves can be regarded as an oscillating perturbation to a flat Minkowski space-time metric , or also as a tidal force oscillating between free test masses , or as a strain oscillating in space-time .
More explicitly , one can show that a wave equation represents the solutions in free space for the metric perturbations of a nearly flat space-time , with waves propagating at the speed of light ( this is a weak gravitational field approximation) .
One can take a coordinate system where the metric has components :
g_ {\mu\nu} = \eta_ {\mu\nu} + h_ {\mu\nu}
\eta_ {\mu\nu}  is the Minkowski metric in special relativity , and
h mu nu

After some calculations the  solution to Einstein’s equations in free space can be written as :

wave eq


hbar mu nu

So the metric perturbations propagate in free space as waves at the speed of light .
A primary example of a source of gravitational waves is a pair of neutron stars , or two black holes , or one of each type of these astrophysical objects .
Observing supernova explosions or the orbital motion of binary pulsars may possibly give and indirect proof of the existence of gravitational waves .
The image below represents gravitational waves generated by two neutron stars orbiting each other (image source : File:Wavy.gif ) :
wavy anim


Ways of detecting gravitational waves include resonant mass detectors , free mass detectors , detectors in space , cosmic background measurements , and monitoring pulsar signals .
External disturbances and the effects of thermal noise in the detecting system should be avoided , the possible interaction between detectors and gravitational waves being very weak .
In 1974 Russell Hulse and Joseph Taylor discovered and observed the orbital period of a binary pulsar . They confirmed that the orbit was accelerating at the rate predicted by the emission of gravitational waves according to the theory of general relativity .
The LIGO (Laser Interferometer Gravitational-Wave Observatory) detectors
are used to attempt to observe directly cosmic gravitational waves . They can detect extremely small strains (of the order of  one part in 10²¹ ).
In the quantum theory of gravity , a quantum field whose excitations are gravitons represents the gravitational field .
Gravitons may be regarded as the normal modes of oscillation of a (gravitational) gauge field , produced by a mass current of accelerating masses .
Some (online) links and resources :
Gravitational wave
McGraw-Hill Encyclopedia of Science and Technology , 10th Edition .

To make this answer complete  , it should be noted that the expression gravity waves is also used to refer to waves studied in oceanography , meteorology and fluid dynamics .
Used in this sense , a gravity wave is a liquid surface layer wave controlled by gravity and not by surface tension .
The surface tension of water becomes unimportant at wavelengths greater than a few centimeters . On the ocean surface or interfaces , all significant waves are gravity waves .
In meteorology , gravity waves are transverse atmospheric waves where the restoring force is caused by the effect of gravity on density and pressure fluctuations .
See for example the Wikipedia article Gravity wave .
The expressions gravity waves and gravitational waves are sometimes used interchangeably for both meanings (i.e. for waves related to general relativity and waves related to fluid dynamics) , so this might cause some confusion.

As an update to the information above , something new took place in the history of the detection of gravitational waves on 11 February 2016 .
For the first time, scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein’s 1915 general theory of relativity and opens an unprecedented new window to the cosmos.[…]
The gravitational waves were detected on Sept. 14, 2015 at 5:51 a.m. EDT (09:51 UTC) by both of the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington.[…]
Based on the observed signals, LIGO scientists estimate that the black holes for this event were about 29 and 36 times the mass of the sun, and the event took place 1.3 billion years ago. About three times the mass of the sun was converted into gravitational waves in a fraction of a second—with a peak power output about 50 times that of the whole visible universe. […]
The discovery was made possible by the enhanced capabilities of Advanced LIGO, a major upgrade that increases the sensitivity of the instruments compared to the first generation LIGO detectors, enabling a large increase in the volume of the universe probed—and the discovery of gravitational waves during its first observation run.
As and additional note , it is generally preferable to have other precise experiments confirming the detection and presence of gravitational waves.